Федеральные документы
Региональные документы
- Приказ О реализации Концепции развития математического образования в Российской Федерации в муниципальной системе образования города Ярославля
- Решение коллегии О реализации Концепции развития математического образования в муниципальной системе образования
Полезные ресурсы
- Ярославская математическая школа http://newschool.yar.ru/14-proekty/211-regionalnyj-proekt-yaroslavskaya-matematicheskaya-shkola
- Портал «Математика для всех» http://math.edu.yar.ru/
Актуальность
Математика занимает особое место в науке, культуре и общественной жизни, являясь одной из важнейших составляющих мирового научно-технического прогресса. Качественное математическое образование необходимо каждому человеку для его успешной жизни в современном обществе.
Цель Концепции развития математического образования: вывести российское математическое образование на лидирующее положение в мире.
Математика в России должна стать передовой и привлекательной областью знания и деятельности, получение математических знаний – осознанным и внутренне мотивированным процессом.
Математика на протяжении всей истории человечества являлась составной частью человеческой культуры, ключом к познанию окружающего мира, базой научно-технического прогресса. Математическое образование является неотъемлемой частью гуманитарного образования в широком понимании этого слова, существенным элементом формирования личности.
Значение математического образования
Математика есть часть общего образования. Ныне ни одна область человеческой деятельности не может обходиться без математики — как без конкретных математических знаний, так и интеллектуальных качеств, развивающихся в ходе овладения этим учебным предметом. Школьное математическое образование способствует:
- овладению конкретными знаниями, необходимыми для ориентации в современном мире, в информационных и компьютерных технологиях, для подготовки к будущей профессиональной деятельности, для продолжения образования;
- приобретению навыков логического и алгоритмического мышления;
- формированию мировоззрения (понимание взаимосвязи математики и действительности, знакомство с методом математики, его отличием от методов естественных и гуманитарных наук, с особенностями применения математики для решения научных и прикладных задач);
- освоению этических принципов, воспитанию способности к эстетическому восприятию мира (постижение красоты интеллектуальных достижений, идей и концепций, познание радости творческого труда).
Цели математического образования
Цели обучения математике определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Назначение математического образования определяется двумя аспектами. Практический, когда обучение математике формирует инструментарий, необходимый человеку в его продуктивной деятельности (вычислительные навыки, методы приближенного вычисления, приложения производной и интеграла и др.), и духовный аспект, связанный с мышлением человека, с овладением математическими методами познания и преобразования мира.
Роль математической подготовки в становлении современного человека определяет следующие цели школьного математического образования:
- приобретение конкретных математических знаний, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
- интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценной жизни в обществе;
- формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности;
- формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии человеческой цивилизации и современного общества.
- Если целевые установки определить как специальную, прагматическую и высшую, то обучение математике преследует три цели:
- грамотный гражданин должен иметь минимум математических знаний и навыков, необходимых в быту, практике (обучающая цель);
- часть учеников должна быть подготовлена для обучения в высшей школе (социальная цель);
- каждый гражданин должен иметь развитое самостоятельное логическое мышление, навыки анализа, сопоставления, обобщения, вывода правильных заключений и опознания ложных (развивающая цель).
Принципы математического образования:
- непрерывность, предполагающая изучение математики на протяжении всех лет обучения в школе;
- преемственность, предполагающая взвешенный учет положительного опыта, накопленного отечественным математическим образованием, и реалий современного мира;
- вариативность методических систем, предусматривающая возможность реализации одного и того же содержания на базе различных научно-методических подходов;
- дифференциация, позволяющая учащимся на всем протяжении обучения получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями (уровневая дифференциация) и предусматривающая возможность выбора типа математического образования в старшем звене (профильная дифференциация).
Перечисленные принципы создают предпосылки для гармонического сочетания в обучении интересов личности и общества, для реализации в практике преподавания важнейшей идеи современной педагогики – идеи личностной ориентации математического образования.
Содержание математического образования
В начальной и основной школе математика является предметом общего образования; обучение в старшей школе предполагает определенную профессиональную ориентацию учащихся, а курсы математики в общенаучном и математическом направлениях носят специализирующий характер. Это естественным образом определяет распределение материала между основной и старшей школой, а также содержательное наполнение профилированных курсов.
Школьное образование складывается из следующих содержательных компонент: арифметика, алгебра, геометрия, элементы математического анализа.
В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Для реализации этих функций требуется уделять достаточное внимание арифметическим (точнее логическим) методам решения задач, культуре вычислений (оценка, прикидка, сочетание устных, письменных и инструментальных вычислений), наполнению учебного материала задачами социально-экономической и жизненной тематики.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры в наибольшей степени выявляет значение математики как искусственного языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждении. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству,
Реализация указанных функций алгебры предполагает внимание к осмыслению алгебры как исторического обобщения арифметики, к правилам конструирования математических выражений, к способам преобразования выражений различной природы (рациональных, иррациональных, тригонометрических и др.), решения соответствующих уравнений и неравенств.
Геометрия – одна из важнейших компонент математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, для эстетического воспитания учащихся. Изучение геометрии вносит свой особый вклад в развитие логического мышления, в формирование понятия доказательства и овладение дедуктивным методом,
Уже с первых лет обучения следует знакомить учащихся с фигурами на плоскости и в пространстве, моделирующими реальные объекты, с измерением геометрических величин, способами изображения геометрических фигур и реальных объектов. Обучение геометрии предполагает установление оптимального и дидактически оправданного баланса между наглядностью и логикой, причем соотношение наглядного и логического должно соответствовать возрастным возможностям учащихся.
Элементы математического анализа необходимы для получения школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
В школе должно быть уделено достаточное внимание изучению реальных зависимостей различными средствами (аналитическими, графическими, инструментальными), формированию умения пользоваться различными языками описания функций. Изучение конкретных функций и их свойств, начинающееся в основной школе, завершается в старшем звене ознакомлением с идеями дифференциального исчисления и понятием интеграла, подходы к изложению которых реализуют, прежде всего, мировоззренческие и общекультурные цели математического образования.